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Focusing errors and Optics Measurements

Errors in the focusing elements lead to an optics perturbation. In first approximationa
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Closed solution for an integrated gradient error, ∆K`, at s = sk

∆βz

βz
(s) = −

1

2 sin(2πQz)
βkz cos[2Qzπ − 2|µz(s)− µkz|]∆K`

Beta-beating

• oscillates with twice the betatron frequency and is thus sensitive to error harmonics

near to 2Qz

• is large when Qz approaches a half integer

a see Courant-Snyder
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Errors in the focusing structure have bad consequences

• unpredictable response to any machine parameter change

• uncontrolled beam size with consequences on aperture, luminosity, beams separa-

tion (Tevatron).

The β function value at a quadrupole location may be evaluated by changing its current

and measuring the tune change

βz = −4π
∆Qz

∆K`

This is a good old method, but

• it requires independently powered quadrupoles

• results are affected by

- orbit perturbations arising from the beam being off-center at the quadrupole

- magnet histeresys (Debuncher, Accumulator)

• the quadrupole calibration must be well known
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Today BPM systems allow more sophisticated techniques and several methods for mea-

suring the linear optics and fitting measurement to a model have been developed in the

last years.

Two main philosophies:

• Closed Orbit response to the excitation of correctors

• Analisys of beam oscillations excited by single kicks or AC dipoles (TBT analysis);

data acquisition is fast and, unlike the previous method, it may be applied in fast

cycling machines (Booster)
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ORM

Orbit change due to the a corrector (no coupling)

δzi = TijΘj =
1

2 sin (πQz)

√
βmz,iβ

c
z,j cos (Qzπ − |µmz,i − µ

c
z,j|)

with z = x or y. The response is proportional to β values both at corrector and

monitor position as well it depends on the phase advance between them. In presence of

errors the actual Twiss parameters may be determined by measuring the actual orbit

response matrix.

By powering one corrector and reading its effect on all BPMs one get NBPM condi-

tions and 2×NBPM + 2 unknowns. By using all correctors the number of unknown

parameters increases to 2×NBPM + 2×NCOR but the number of constraints be-

comes NBPM×NCOR. The number of unknown parameters increases by 2×NBPM +

2×NCOR if also BPM and correctors roll angles and calibrations are considered.
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The (usually) large number of constraints allows to compute accurately the unknown

parameters at BPMs and correctors by simple computations a.

One can do more by attempting to change the machine theoretical model so to fit the

measured orbit changes. In general (eventually coupled machine)

~Z = Mmeas~Θ with ~Z ≡

x
y

 ~Θ ≡

Θx

Θy


Mmeas

ij being the measured beam position at the ith BPM due to a unitary kick at

the jth corrector. One can compute the response matrix, Mmod, for the theoretical

optics, by using any (coupled motion handling) optics code. Machine parameters as

quadrupole gradients, roll angles etc., as well as gauge factors and roll angles of BPMs

and correctors are varied so to minimize the difference between the model matrix and

the measured one

χ2 = Σij

[Mmod
ij −Mmeas

ij ]2

σ2
i

σi ≡ BPMs rms noise

athe equations being non-linear in the unknown parameters, one may apply an iterative procedure
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Two ways for solving in practice the problem

• CALIF orginal algorithm by Corbett, Lee and Ziemann (SLAC) uses a first-order

perturbation

Mmod
ij = Mmod,0

ij + Σq

∂Mmod,0
ij

∂Kq

∆Kq

with Mmod,0
ij and its derivatives computed by COMFORT. Gauge errors are em-

bedded into Mmeas
ij

• LOCO (Linear Optics from Closed Orbits) by Safranek (BNL) iterates the above

procedure recomputing Mmod,0
ij and derivatives at each step. It is slower but more

accurate.

These techniques were first developed for small machines as SPEAR (SLAC) and the

NSLS X-Ray Ring (BNL). At Fermilab LOCO has been introduced with support from

Sajaev of ANL, by Lebedev, Nagaslaev, Valishev and M. Xiao for Recycler, Debuncher,

Antiproton Accumulator and Tevatron.
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Tevatron is the largest accelerator where such technique is routinely used. The upgrade

of the BPM system improved the position measurement resolution to about 10µm.

Ideally the lower limit to the difference between model-expected orbit and measured

orbit is the BPMs resolution.

• 29+30 out of 2×110 correctors tipically used

• 118 horizontal and 118 vertical BPMs

• 216 normal and 216 skew quadrupole errors

The model includes also the (unknown) beam energy change due to the horizontal

correctors

Mmodel
ij →Mmodel

ij +
∆Ej

E
Dm
x,i with

∆Ej

E
Θj = −

Dc
x,j

αcL
Θj

⇒ 1022 + 29 free parameters and 13924 equations.

The dispersion at the BPMs is measured as usual by changing the RF frequency.
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Wrt the original ANL version, the energy change effect and coupling where introduced.

Both were essential to get sensible fits. Nevertheless a lot of “manual” tweaking was

necessary before the code produced reasonable results.

Using 59 correctors and recording 20 orbits per corrector setting, data acquisition re-

quires about 50 minutes.

Data analysis is parallelized and runs on the linux HEIMDALL cluster. The model is

computed by OptiM, starting with actual machine currents and magnet survey data.

The fit takes about 2 hours (assuming model and measurement are not too far).
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————————————————————————————————–

A mathematical “excursus”:

Singular Value Decomposition

Any M ×N (with M ≥ N ) matrix A may be written as

A = UΣV T

with

U M ×N orthogonal matrix ie (UTU)ij = δij i, j ≤ N
V N ×N orthogonal matrix

Σ N ×N diagonal matrix

The diagonal elements Σj are called singular values.

For M < N , it is Σj = 0 and Uij = 0 for j > M .

There are routines available for matrix decomposition.

SVD decomposition is useful for solving system of linear equations.
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For a squared matrix, the inverse is

A−1 = V Σ−1UT

If some Σi = 0 (or small) the matrix cannot be inverted and the system has infinite

number of solutions. Replacing 1/Σi by zero for those singular values, the matrix

V Σ−1UT gives the solution with the smallest length.

For M < N (more variables than constraints), again the decomposition will give the

smallest length solution, while for the case M > N (more constraints than variables)

it gives the least square solution.

Excursus end.

————————————————————————————————–
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The LOCO mathematical solution at each step is found by a SVD with threshold adjusted

to eliminate the very small singular values.

ORM Singular Values

Problems (common to other methods)

• it can only resolve relative BPMs

and corrector gauge errors

• large kicks increase signal-to-noise

ratio, but introduce large system-

atic errors (non-linearities)

The effect of random errors on the fitted solution is estimated by comparing the solution

found for a single set of measurement with the average value.
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The LOCO analysis applied to the Debuncher allowed to improve the optics and to

increase the machine aperture.

The LOCO analysis is used routinely at Tevatron to

• find large gradient/roll errors

• keep track of the machine optics.

• produce a realistic model as basis for optics improvement and luminosity gain
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Skew Gradient Errors (kGs)

D16

28cm β* End of Store Study 8/4

(A. Valishev courtesy)

Horizontal Chromatic Beta Function
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Fourier Analysis of TBT data

Single Kick

The Fourier analysis of TBT data has been first applied at LEP in 1992 as a tool for

measuring the uncoupled linear optics.

TBT data at the jth BPM following a single kick in the z plane (z ≡ x, y)

zjn =
1

2

√
βjzeiΦ

j
zAzeiQz(θj+2πn) + c.c.

with n ≡ turn number Az = |Az|eiδz ≡ constant of motion

Φz ≡ µz −Qzθ (periodic phase function)

Twiss functions:

βjz = |Zj(Qz)|2/A2
z µjz = arg (Zj)− δz

Zj(Qz) ≡ Fourier component of zj

Amplitude fit:

|Az|2 =

∑
j 1/βjz∑

j 1/|Zj(Qz))|2
'

∑
j 1/β0j

z∑
j 1/|Zj(Qz))|2
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Using Mais-Ripken parameterization, motion in presence of coupling may be written as

xn = AI

√
βxI cos(φxI + δI + 2πnQI) +

AII

√
βxII cos(φxII + δII + 2πnQII)

yn = AI

√
βyI cos(φyI + δI + 2πnQI) +

AII

√
βyII cos(φyII + δII + 2πnQII)

and thus the Fourier analysis gives the coupled Mais-Ripken Twiss functions βzI,II and

φzI,II (z ≡ x, y), a part for the constants of motion AI,II and δI,II .
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Some Tevatron results

The Tevatron BPMs can store 8192 positions data per BPM. The electronics upgrade

allows a high resolution (' 15- 50 µm) measurement of the TBT beam position.

Under “ideal” conditions the oscillations following a kick last some thousand turns

TBT position after a horizontal kick
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Reconstructed Injection Optics (November 2005 data)
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Some Main Injector results (2007)

The upgrade of the MI BPM system allows the use of TBT techniques.
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Some Booster results (2008)

The Booster accelerates the pro-

ton beam from Ek=400 MeV

to 8 GeV in 33 ms. There

are 51 BPMs measuring in both

planes, each recording about

20000 turns. The orbit has a

large excursion on the ramp; the

closed orbit is piecewise com-

puted and subtracted from the

raw data.
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The beam is kicked every 500 turns

either by a horizontal or a vertical

pinger. Spectra may be confusing.
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Some data are good enough for a sensible

optics computation; for instance for the

6.5 ms slot of a ramp recorded in March

2008.

nb: the points denoted as ICA have been

obtained with my “home made” version.

At least it is possible to track the tunes;

this allowed to correct the linear coupling

in the first 4 ms of a test ramp. Efforts to

move tunes for large space charge opera-

tion are going on.
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AC dipole

The coherent oscillation following a single kick decays more or less quickly and the

emittance growth makes the beam almost unusable afterwards.

One can use a AC dipole a for exciting a driven coherent oscillation. Although the dipole

frequency, νd, is very close to the natural beam oscillation frequency, ν, if adiabatically

ramped up and down and if the field is small enough, it does not blow-up the emittance.

AC dipoles have been employed at BNL (AGS and RHIC), CERN SPS and at Tevatron.

There is an ongoing project to develop AC dipoles for LHC too.

The relationship between TBT analysis results and actual BPMs Twiss parameters is not

as straightforward as for free oscillations: the AC dipole is equivalent to a quadrupole

perturbation b which vanishes only when δν = ν − νd vanishes. For hadron machines

this condition cannot be fullfilled, but one can make several measurements for different

values of δν and fit the results to find the unperturbed Twiss parameters at the BPMs

location.

a sinusoidally oscillating magnetic field
bsee Miyamoto, Kopp, Jansson and Syphers, THPAN102, PAC07
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Tevatron AC dipole

(Ryoichi Miyamoto courtesy)
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Independent Component Analysis of TBT data (ICA)

ICA uses techniques for blind source separation. These techniques are used in signal

processing for recovering a set of signals of which only instantaneous linear mixtures

are observed by exploiting their time coherence. It is assumed that the sources are

narrowband and independent. The matrix containing P measurements at M stations,

X is written as

X =


x11 x12 . . . x1P

x21 x21 . . . x2P

. . . . . . . . . . . .

xM1 xP2 . . . xMP

 = AS +N
M ≡ number of BPMs

P ≡ number of turns

N ≡ number of sources

where S is a N × P matrix describing the N sources, A is a M ×N mixing matrix

and N is a M × P matrix containing the measurement noise.
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One can make a SVD decomposition of the starting covariance matrix Cx(0) in order

to keep only the Ns singular values above a given threshold a

Cx(0) =

U1 0

0 U2

Σ1 0

0 Σ2

UT
1 0

0 UT
2


U1,M×Ns and Σ1,Ns×Ns collect the parts corresponding to the singular values above

threshold.

Thus the matrices

VNs×M ≡ Σ
−1/2
1 UT

1 and ξNs×P ≡ V X

are constructed.

Due to the hypothesis of narrowband and independence and in the limit P →∞, for

the time lagged covariance matrix of S, Cs
ij(n), holds

Cs
ij(n) ≡ (SST )ij(n) = ΣkSikSj,k+n = δijSij(n)⇒ Cs(n) is diagonal

a the SVD of a symmetric matrix is equivalent to the eigenvalue problem
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Thus the time lagged covariance matrices Cx(n) and Cξ(n) are symmetric. In par-

ticular

Cξ(n) = [Σ
−1/2
1 UT

1 A]Cs(n) [Σ
−1/2
1 UT

1 A]T ≡WCs(n)W T

We recognize that

• this a “similarity transformation”

• for each n the same transformation W maps the starting basis into the basis of

eigenvectors of Cξ(n)

Now the game consists in finding the transformation which diagonalizes simultaneously

all Cξ(n), with n ∈ [n1, nm] a. There are mathematical algorithms to find an

(approximated) solution.

It is worth noting that having applied the ICA to Cξ(n) rather than Cx(n) have greatly

reduced the dimensions of the problem.
a the previous analysis may be applied to the, by definition, symmetric matrix

C̄ξ(n) ≡
1

2

[
Cξ(n) + CξT (n)

]
rather than Cξ(n)
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If W is the Ns×Ns matrix which diagonalizes the given set of Cξ(n) the (important

part of) mixing matrix A and source matrix S are given by

A = V −1W S = W TV X

Betatron motion:
 Sik

Si+1,k

 =

cos 2πQi(k − 1)

sin 2πQi(k − 1)

 Aji

Aj,i+1

 =

ai
√
βji sin (µji + Φi)

ai
√
βji cos (µji + Φi)


The Twiss functions are finally given by

βi = a2(A2
ni +A2

n̄i) ψi = φo + tan−1

(
A2
ni

A2
n̄i

)
where a and φ0 are constant of motion and n and n̄ are the indeces corresponding

to the betatron motion component. They are recognized by a Fourier analysis of the

temporal vectors of S (its rows) or of the reconstructed contribution of each source to

Xij (i = 1, ...M and j = 1, ...P ).
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• ICA may be more convenient than the simple Fourier analysis in presence “spurious”

sources as synchrotron side-bands

• an evaluation of the constant a is needed for which a model is needed

• the different modes are recognised by a Fourier analysis

• wrong BPMs, recognised by analysing the spatial vectors of A, must be excluded

and the analysis repeated

Different ICA algorithms have been implemented for Booster and Tevatron

• a MATLAB application for the Booster by X. Huang is available on wally

• a OCTAVE version for TEVATRON by A. Petrenko runs on HEIMDALL

(see http://www-bdnew.fnal.gov/tevatron/lifetrac/tbt/)

But we have no keepers....
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Some results for Boostera

ICA compared to Princi-

pal Component Analysis for

simulated data in presence

of coupling: the spectrum

of the temporal modes after

ICA decomposition shows

no contamination between

the two orthogonal modes.

Tunes tracked along the

Booster ramp (measure-

ment)

a from Huang, Lee, Prebys and Tomlin,Phys.Rev.ST Accel.Beams 8:064001(2005) and PAC05
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Twiss functions from TBT

measurement in DC mode

vs. MAD model

Dispersion from TBT mea-

surement in DC mode vs.

MAD model
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Some results for Tevatrona

TBT position after a horizontal

kick, large coupling visible in the

TBT data and its spectrum

a from Petrenko, Lebedev and Valishev, WEPP037, Epac08
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The spectrum of the temporal

modes after ICA decomposition,

ie rows or of the reconstructed S,

shows small contamination be-

tween orthogonal modes.
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OPTICS FIT FROM TBT DATA

The Fourier analysis, for instancea, of the measured TBT data

xn = AI

√
βxI cos(φxI + δI + 2πnQI) +

AII

√
βxII cos(φxII + δII + 2πnQII)

yn = AI

√
βyI cos(φyI + δI + 2πnQI) +

AII

√
βyII cos(φyII + δII + 2πnQII)

gives the coupled Mais-Ripken twiss functions βzI,II and φzI,II (z ≡ x, y), a part for

the constants of motion AI,II and δI,II .

aOther TBT data analysis methods of course may be used
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The eigenvectors of the coupled transport matrix are related to the Mais-Ripken twiss

functions

V11 ≡
√
βxI cosφxI V12 ≡

√
βxI sinφxI

V13 ≡
√
βxII cosφxII V14 ≡

√
βxII sinφxII

V31 ≡
√
βyI cosφyI V32 ≡

√
βyI sinφyI

V33 ≡
√
βyII cosφyII V34 ≡

√
βyII sinφyII

Goal: adjust

• quadrupole gradient and tilt

• BPMs calibration and tilt

• AI,II and δI,II

in order to fit the measured eigenvector values at the BPMs.
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Application to Tevatron

• Number of observation points: 2 × 118

• Current Tevatron model (A.Valishev): 216 normal and 216 skew thin quadrupoles

to simulate gradient and tilt errors. We must add the unknown BPM calibrations

and tilts, with the additional condition < ri >=1, and the oscillation amplitude

and phase.

All together: 908 parameters and 945 constraints. As for LOCO we need a code

for computing the model optics. After trying with MADX, a dedicated program for

both optics computations and minimization has been writtena. To save computing

time machine sections between variable elements and/or between observation points are

described by pre-computed maps.

The advantage wrt for instance LOCO is the rapidity of the data acquisition.

The f77 code has been translated into C by using f2c. The code has been embedded in

the C++ console application W116 for acquiring data and setting fit parameters.

aby guest scientist V.Kapin, based on Y.Alexahin Mathematica Notebook
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Linear Coupling (perturbation theory)
Method of the variation of constants:

The general solution of the perturbed motion keeps the form of the unperturbed one with

constants, ci, depending on timea

(Guignard, CERN 78-11)

Hamiltonian in presence of a perturba-

tion H1

H = [H0 +H1](q1, ...qn, p1, ...pn)

= [U0 + U1](c1, ...c2n)

Equations of motion

dcj

dt
= Σm[cj, cm]

∂U1

∂cm

aθ or s in our case
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When the unperturbed Hamiltonian describe the betatron motion, thus

dAz

dθ
= i

∂U1

∂A∗z

dA∗z
dθ

= −i
∂U1

∂Az

with qi =
Az

2

√
βze

iµz + c.c.

For perturbation fields generating linear coupling (Guignard)

U1(~a) =
1

2
[C+(θ)axay + C∗+(θ)a∗xa

∗
y + C−axa

∗
y + C∗−a

∗
xay]

az ≡ Aze
iQzθ

where

C±(θ) ≡
R
√
βxβy

2Bρ

{(∂Bx

∂x
−
∂By

∂y

)
+Bθ

[(αx
βx
−
αy

βy

)
−i
( 1

βx
∓

1

βy

)]}
ei(Φx±Φy)

and

Φz ≡ µz −Qzθ
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“Ansatz” (Y. Alexahin)

ax(θ) = ax0(θ) + w∗−(θ)ay0(θ) + w∗+(θ)a∗y0(θ)

ay(θ) = ay0(θ)− w−(θ)a∗x0(θ) + w∗+(θ)a∗x0(θ)

Inserting into the equation of motion and keeping 1th order terms one finds the equations

for w±

2ie−iQ±θ
d

dθ
eiQ±θw±(θ) = C±(θ)
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The periodic solutions are

w±(θ) = −
∫ 2π

0

dθ′
C±(θ′)

4 sinπQ±
e−iQ±[θ−θ′−πsign(θ−θ′)]

with

Q± ≡ Qx ±Qy

The functions w̃± ≡ w±eiQ±θ are

• constant in coupler free regions

• experience a discontinuity −iC±`/2R at coupler locations⇒ diagnostics tool !

• are constant on the resonances Qx ±Qy = int.

Minimum tune split (Guignard)

∆ ≡ |C̄n−
− | C̄

n±
± =

1

2π

∫ 2π

0

dθ C±ein±θ =
n± −Q±

π

∫ 2π

0

dθ w±ein±θ

with

n± ≡ Round(Qx ±Qy)
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Linear coupling computation through TBT analysis

TBT beam position at the jth vertical BPM following a horizontal kick

yjn =
[√
βjy

(
e−iΦ

j
ywj+ − eiΦ

j
ywj−

)]
AxeiQx(θj+2πn) + c.c.

TBT beam position at the j-th horizontal BPM following a vertical kick

xjn =
[√
βjx

(
e−iΦ

j
xwj+ + eiΦ

j
xw∗j−

)]
AyeiQy(θj+2πn) + c.c.

The FFT of yj at Qx, Y j(Qx), for a horizontal kick (Xj(Qy) for a vertical one) is

proportional to the coupling functions w±(θj).

We get per each BPM 2 real equations in 4 unknowns. When between two consecutive

monitors there are no strong source of coupling, the four equations can be solved in

favor of w±(θj) = w±(θj+1).
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Examples of Tevatron Measurements

Coupling functions (November 2005 data)
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s(m)

ℜ ( w+eiQ+θ ) at v-BPMs
ℑ ( w+eiQ+θ ) at v-BPMs
ℜ ( w+eiQ+θ ) at h-BPMs
ℑ ( w+eiQ+θ ) at h-BPMs

w̃+
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ℜ (  w-e
iQ-θ ) at v-BPMs

ℑ (  w-e
iQ-θ ) at v-BPMs

ℜ (  w-e
iQ-θ ) at h-BPMs

ℑ (  w-e
iQ-θ ) at h-BPMs

w̃−

Jumps visible around 1000 (SQA0), 1500 (A38) and 4000 (D16) meters.
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The TBT analysis may be used to correct the linear coupling.

An application program for the TBT analysis has been integrated in the TEVATRON

control system and is used routinely at shot set up for correcting the minimum tune

split ∆ ≡ |C̄−| with two skew quadrupole circuits.

The application

• fires the pinger

• acquires the TBT data

• perform the Fourier analysis

• computes the coupling functions, w± at the BPMs and the integral C̄
n−
−

• sets the compensating currents in the skew quadrupoles circuits

This procedure is faster than finding empirically the minimum tune split.
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Minimum tune split measured with S.A. and computed from TBT data
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TEVATRON being a fast ramping machine (83 seconds from 150 to 980 GeV), the

TBT analysis is a very practical method for measuring optics and coupling also during

acceleration. A second console application (W118) has been written for this purpose.

First ramp after 2006 shut down

(3th June 2006)

After correcting with W118

(6th June 2006)
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Summary

I have tried to highlight some of the optics tools developed for Run II, mainly for

Tevatron.

Some of them found application also in other machines.

Lack of time (and knowledge) did not allow me to show other tools developed by various

colleagues.
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